A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction.

نویسندگان

  • Jin-Cheng Li
  • Shi-Yong Zhao
  • Peng-Xiang Hou
  • Ruo-Pian Fang
  • Chang Liu
  • Ji Liang
  • Jian Luan
  • Xu-Yi Shan
  • Hui-Ming Cheng
چکیده

A nitrogen-doped mesoporous carbon containing a network of carbon nanotubes (CNTs) was produced for use as a catalyst for the oxygen reduction reaction (ORR). SiO2 nanoparticles were decorated with clusters of Fe atoms to act as catalyst seeds for CNT growth, after which the material was impregnated with aniline. After polymerization of the aniline, the material was pyrolysed and the SiO2 was removed by acid treatment. The resulting carbon-based hybrid also contained some Fe from the CNT growth catalyst and was doped with N from the aniline. The Fe-N species act as active catalytic sites and the CNT network enables efficient electron transport in the material. Mesopores left by the removal of the SiO2 template provide short transport pathways and easy access to ions. As a result, the catalyst showed not only excellent ORR activity, with 59 mV more positive onset potential and 30 mV more positive half-wave potential than a Pt/C catalyst, but also much longer durability and stronger tolerance to methanol crossover than a Pt/C catalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

2D nitrogen-doped mesoporous carbon (NMC) is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR). The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates-viz. graphene oxide and triblock copolymer F12...

متن کامل

Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes.

Nitrogen-doped (N-doped) single-wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition using SiOx nanoparticles as a catalyst and ethylenediamine as the source of both carbon and nitrogen. The N-doped SWCNTs have a mean diameter of 1.1 nm and a narrow diameter range, with 92% of them having diameters from 0.7 to 1.4 nm. Multi-wavelength laser Raman spectra and temperature-...

متن کامل

Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction.

We have for the first time developed a simple plasma-etching technology to effectively generate metal-free particle catalysts for efficient metal-free growth of undoped and/or nitrogen-doped single-walled carbon nanotubes (CNTs). Compared with undoped CNTs, the newly produced metal-free nitrogen-containing CNTs were demonstrated to show relatively good electrocatalytic activity and long-term st...

متن کامل

Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction.

A family of mesoporous nonprecious metal (NPM) catalysts for oxygen reduction reaction (ORR) in acidic media, including cobalt-nitrogen-doped carbon (C-N-Co) and iron-nitrogen-doped carbon (C-N-Fe), was prepared from vitamin B12 (VB12) and the polyaniline-Fe (PANI-Fe) complex, respectively. Silica nanoparticles, ordered mesoporous silica SBA-15, and montmorillonite were used as templates for ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 45  شماره 

صفحات  -

تاریخ انتشار 2015